
Reducing Uncertainty in Wireless Sensor Networks

Network Inspection and Collision-Free Medium Access

Wireless Sensor Networks

- Wireless Sensor Networks (WSN)
 - Wireless network of sensor nodes
 - Sensor nodes: sensing, processing, radio, power
- Monitoring and control of real-world phenomena
 - Scientific tool
 - Production and delivery
 - Health care
 - Military

Deployment Problems

Agriculture [4]

Great Duck Island [1]

Redwoods [2]

Redwood Tree (Wikipedia)

- Hardware failures: moisture, extreme clock drift, battery depletion, etc.
- Networking problems: (link failures, no route, spanning tree construction), often only detected after deployment
- Correlated traffic bursts of event-triggered applications require special application design

[1] R. Szewcyk et. al. An analysis of a large scale habitat monitoring application. Sensys '04.

[2] G. Tolle et. al. A macroscope in the redwoods. SenSys '05.

[3] Geoff Werner-Allen et. al. Fidelity and yield in a volcano monitoring sensor network. OSDI '06.

[4] O. V. K. Langendoen et. al. Murphy loves potatoes: Experiences from a pilot sensor network deployment in precision agriculture. WPDRTS 'o6.

Thesis Statement

Deployment problems are caused by: implementation and design defects.

- Tools for inspection to *detect faults* in deployed WSN are inadequate. <u>Passive inspection</u> is an effective and interference-free way to inspect a deployed network.
- Energy-efficient probabilistic MAC protocols are inadequate to prevent faults caused by correlated traffic bursts typical for event-triggered applications. <u>Collision-free schedule-based MAC protocols</u> can handle traffic bursts well and be made energy-efficient, too.

Main Contributions

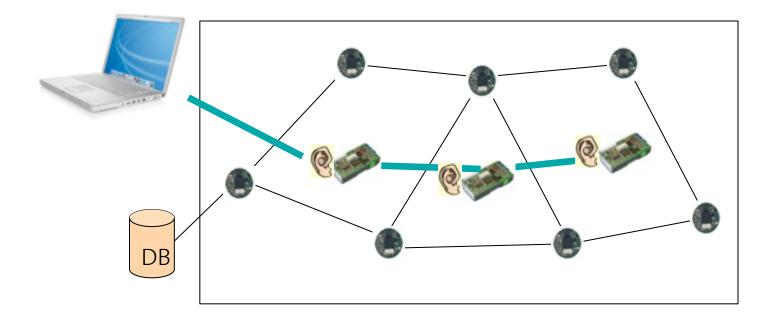
- Fault Detection: Passive Inspection
 - Sensor Network Inspection Framework (SNIF) including novel time synchronization for Bluetooth Scatternets
- Fault Prevention: Collision-Free Medium Access
 - Cooperative transmission schemes as foundation for efficient coordination among a set of nodes
 - Two protocols: BitMAC and BurstMAC that handle corelated traffic bursts

Part I – Fault Detection: Passive Inspection

Problem

- Deployed WSN suffer from defects not detected during development.
- Existing tools (debugger, testbed, simulation, emulation) don't work for deployments.
- In-network monitoring: Sympathy¹, Memento²
 - "Heisenbugs"
 - Waste of resources

Active collection of network state as part of WSN application


- Monitoring suffers from network problems, too.

^[1] N. Ramanathan et al. Sympathy for the sensor network debugger. SenSys '05.

^[2] S. Rost et al. Memento: A Health Monitoring System for Wireless Sensor Networks. SECON '06.

Approach

- **Passive inspection** of wireless sensor network with temporary sniffer network
- Passive indicators to detect problems

Example: Node Reboot Indicator

- Basic idea: observe sequence number in "hello" beacons send by link estimator
- Premise:
 - Sequence numbers are increasing
 - First beacon packet contains sequence number zero
- Passive node reboot indicator:

new sequence number ≠ last sequence number + 1

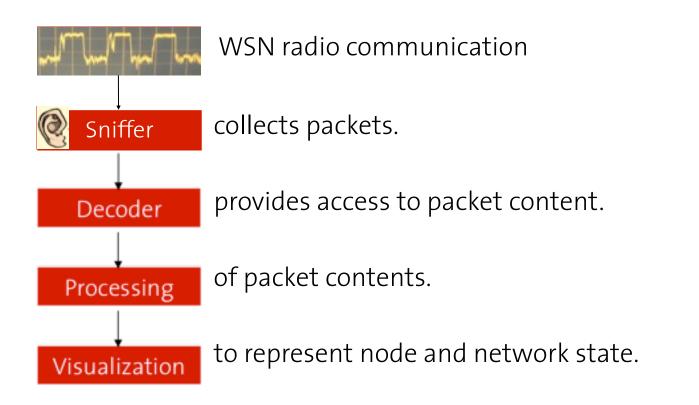
"But what happens:

- if not all packets are captured
- the sequence number counter overflows?"

Challenge (1): Incomplete Information

Incomplete Information due to:

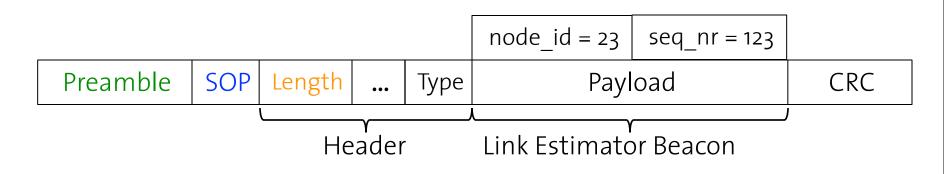
- Packet loss: not all packets are received
- Black box observation: internal state unknown


Example: Node Reboot Indicator

- Packet loss: not an issue for this indicator:
 - Updated rule: "new number < last sequence number => reboot"
- Black box:
 - Sequence counter could overrun internally: oxffff=>oxoooo
 - It is not possible to correctly distinguish overrun and reboot
 - Heuristic: use minimal time between beacons to calculate earliest expected time for received beacon packet

Challenge (2): Generic System

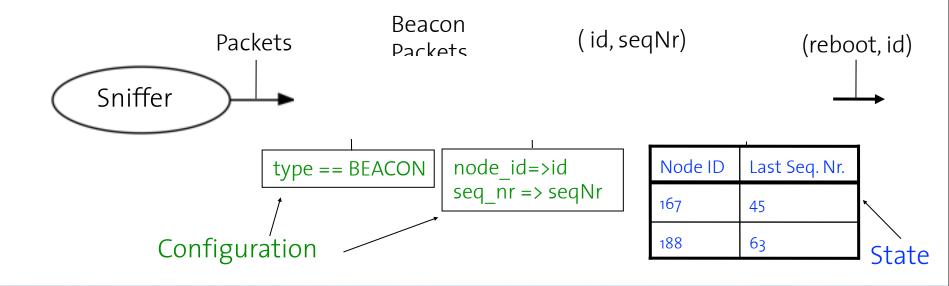
- No standard for WSN radio communication
 - Growing number of Media Access (MAC) Protocols: {B, S, T, SCP..}-MAC, WiseMAC, BitMAC, ...
 - Different packet formats: preamble length, start-of-packet symbol (SOP), packet size, CRC
- Non-standard protocols, message formats...
- Different types of faults to detect

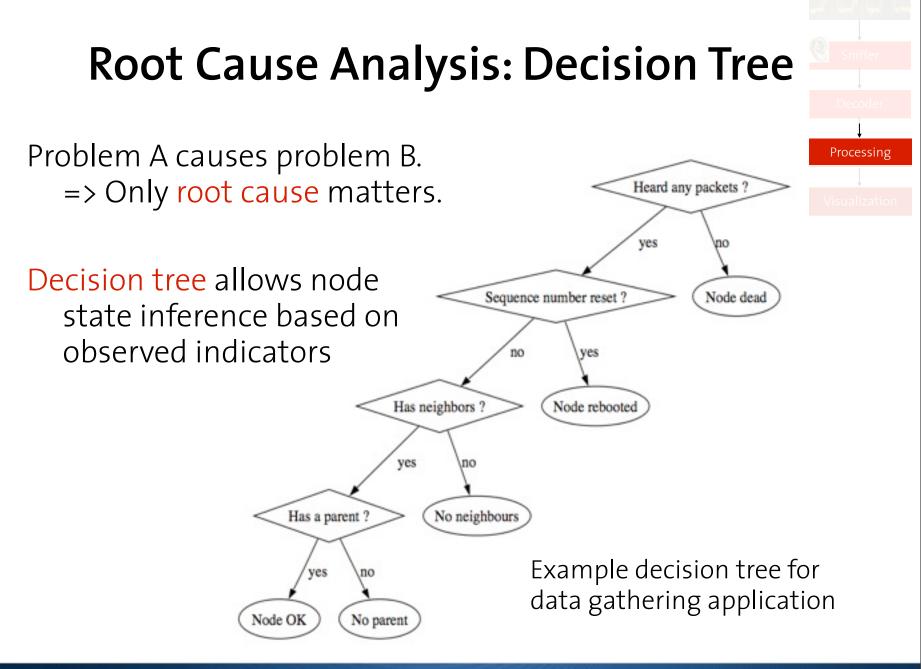

SNIF: Sensor Network Inspection Framework

Sniffer and Packet Decoder

Sniffer

- Generic sniffer
 - Always listening, waiting for Preamble and Start-of-Packet(SOP)
 - Packet size either fixed or variable using Length field
- Generic packet decoder
 - Packet format described by "Attributed C Structs"
 - Most WSN apps are written in C, easy copy & paste
 - Attributes allow to specify variable size arrays and encapsulated packets

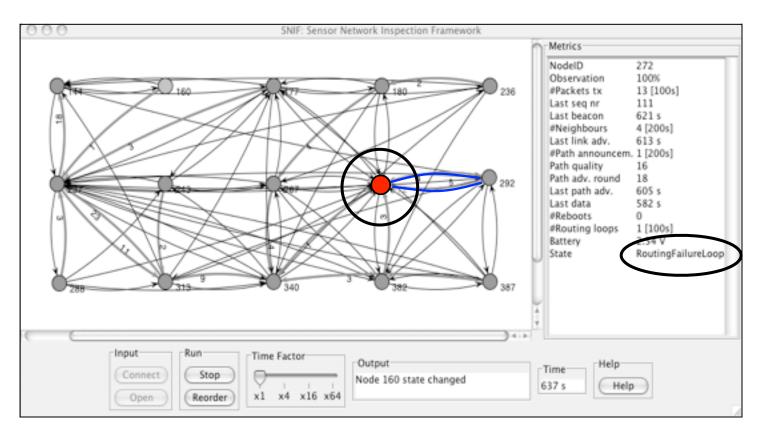



Online Packet Processing with Data Streams

Processing

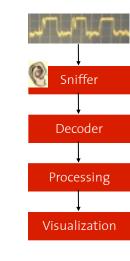
Data stream processing:

- Configurable operators
- Reusable operators and sub-graphs
- Online processing



Visualization

Visualization


- Indicators and node state can be inspected
- Replay of recorded sessions

16

Summary: Passive Inspection

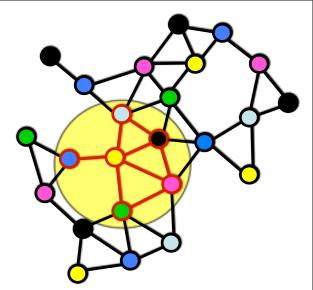
- Passive inspection represents a valuable tool for deploying WSNs.
- Challenges: Incomplete information, generalization
- SNIF provides...
 - Distributed sniffer based on BTnode platform
 - Generic packet decoder
 - Data stream processing with WSN specific operators, sub-graphs are reusable
 - Basic network and state visualization

Part II – Fault Prevention: Collision-free Medium Access

Event-triggered Applications

On seismic activity: send seismographic trace of last minute (with 1 kHz resolution) to base station.

Otherwise: sleep and save energy.

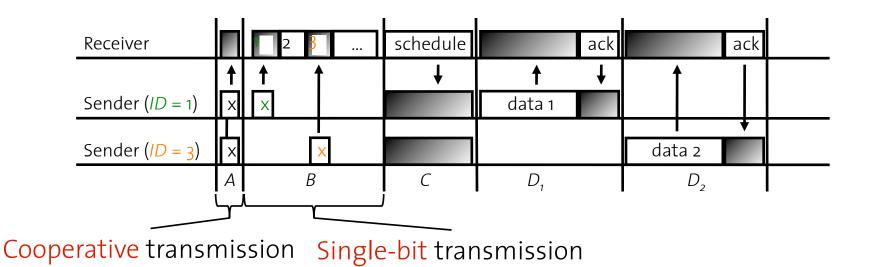


On seismic event, all nodes in a region start to communicate

Correlated Traffic Bursts

- Problem: Common probabilistic MAC protocols (WiseMAC, {B,S,T,X}-MAC) cannot handle such correlated traffic bursts, resulting in:
 - Collisions
 - Packet losses
 - Long latencies
- Schedule-based TDMA protocols can handle traffic bursts without collisions, but introduce coordination overhead.

BurstMAC Approach



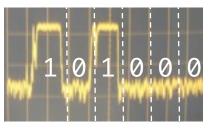
- Transform unstructured set of nodes into network of star networks.
- Each star network:
 - Communicates on interference-free radio channel assigned by 2-hop coloring.
 - Uses TDMA schedule.
- Challenge: Energy-efficient TDMA coordination

TDMA for Star Networks

Energy-efficient packet coordination and transmission

- A. At least one sender?
- B. Which nodes want to send?
- C. Calculate and broadcast schedule
- D. Send packets with acknowledgements

Cooperative Transmission: Is collision-free concurrent access possible?

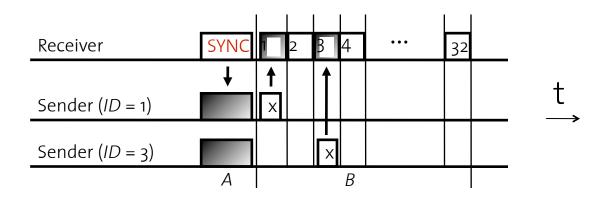

Experiment: Two nodes A and B send different On-Off-Keying (OOK) modulated data.

The OR channel characteristic of the broadcast medium allows for cooperative transmissions.

A + B

B

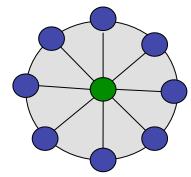
А



Single-Bit Transmission: How-to transfer single bits of information?

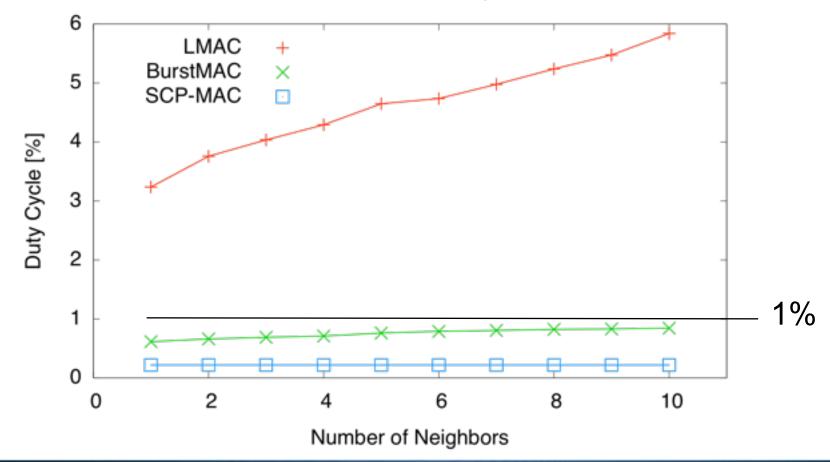
Setup: One receiver, multiple sender, small IDs (5-bit)

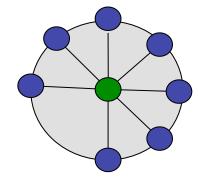
- A. **SYNC** packet synchronizes all senders (~ 10 us).
- B_{s} . Sender encodes its ID *i* by sending carrier in mini slot *i*.
- B_r. Receiver collects vector of single bits.



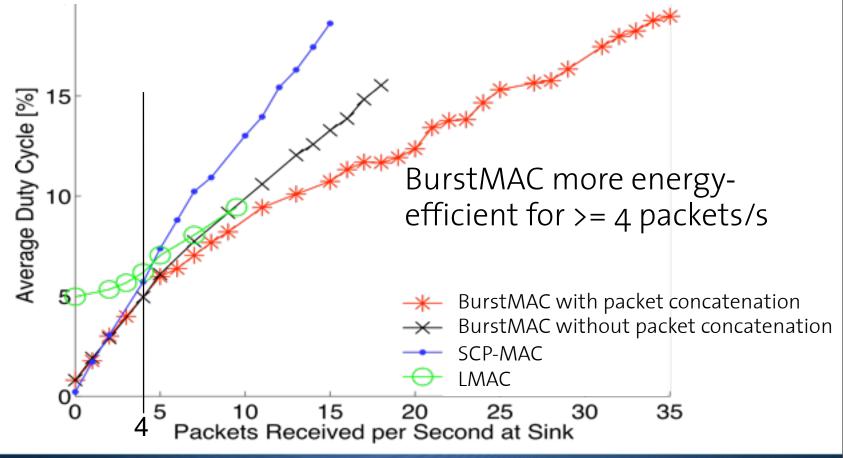
Evaluation

- Evaluation:
 - Idle energy vs. node density
 - Energy consumption comparison to:
 - SCP-MAC: Efficient probabilistic protocol
 - LMAC: Schedule-based protocol
 - Evaluated on BTnode rev. 3with Chipcon CC1000 radio transceiver, packet payload 32 bytes, further details can be found in dissertation.


^[1] L. van Hoesel: A Lightweight Medium Access Protocol (LMAC} for Wireless Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches, INSS '04


^[2] W. Ye: Ultra-low duty cycle MAC with scheduled channel polling. Sensys '06.

Idle Duty Cycle


Experiment setup: 1 node and 1-10 neighbors

Traffic Burst

Experiment setup: 1 sink and 7 neighbors

Summary: BurstMAC

- Energy-efficient multi-channel TDMA protocol:
 - Efficient scheduling in star networks
 - Collision-free: handles correlated traffic bursts well
 - Duty cycle < 1.0% in idle situation
 - High throughput, up to 71% bandwidth usage
- Not shown:
 - Energy-efficient network startup
 - Inter-star communication coordination
 - Robust packet concatenation for packet bursts

Conclusions

Summary

- Main contributions:
 - Fault detection: Passive Inspection with Sensor Network Inspection Framework (SNIF)
 - Fault prevention: Collision-free BurstMAC protocol
- Other:
 - Generic sniffer and packet markup language
 - Bluetooth time synchronization for Scatternets
 - Single-bit transmission technique

Limitations and Outlook

- Passive Inspection
 - Limited insight
 - Multi-channel protocols
 - Semi-passive inspection
- Collision-free MAC Protocols
 - Packet-based radio transceivers
 - Dense networks

Questions?

- M. Ringwald, K. Römer. *BitMAC: A Deterministic, Collision-Free, and Robust MAC Protocol for Sensor Networks*. EWSN 2005.
- M. Ringwald, K. Römer, A. Vitaletti. *Passive Inspection of Sensor Networks*. DCOSS 2007.
- M. Ringwald, Kay Römer. *Deployment of Sensor Networks: Problems and Passive Inspection*. WISES 2007.
- M. Ringwald, K. Römer. *Practical Time Synchronization for Bluetooth Scatternets*. BROADNETS 2007.
- M. Ringwald, K. Römer. *BurstMAC A MAC Protocol with Low Idle Overhead and High Throughput (Work in Progress)*. DCOSS 2008.